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ABSTRACT 

In the entrance region of a nonequilibrium MHD generator one finds an abrupt r ise  
in electron temperature followed by a four- or five-decade increase in electron density. 
We consider the stability of this region of abrupt electron density rise. A solution is 
found in the limit that the ambipolar diffusion field is small compared to the transverse 
applied electric field. The solution is found to be stable in the limit of zero magnetic 
field but to be unstable in the presence of a magnetic field. 
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SUMMARY 

Previous analyses of electrothermal instabilities in MHD generators have considered 
fluctuations from a steady state solution pertinent to the infinite homogeneous medium. 
In the entrance region of a nonequilibrium generator this condition is not valid since in 
this region one finds an abrupt r ise  in electron temperature followed by a four- or five- 
decade increase in electron density. We consider the stability of the subregion of abrupt 
electron density rise. The steady state solution is one of uniform gas dynamic proper- 
ties and electron temperature but with an electron density gradient which is solely a 
function of the ionization rate. This rate is evaluated at an electron temperature ob- 
tained by equating the Joule heating to the elastic collisional and ionization energy loss. 
The governing equations upon which the perturbation is taken are those of reference 1 
with the exception that recombination is neglected in the electron continuity equation. A 
solution is found in the limit that the ambipolar diffusion field is small compared to the 
transverse applied electric field. The solution is found to be stable in the limit of zero 
magnetic field but to be unstable in the presence of a magnetic field. 

INTRODUCTION 

In contrast to experiments performed with equilibrium MHD generators, nonequilib- 
rium generators have conspicuously failed to operate at anything near the performance 
predicted by theory. These negative results have been attributed to such factors as Hall 
current leakages resulting from the higher Hall parameters required to operate in the 
nonequilibrium mode, insufficient residence time of the working fluid in the generator 
for the nonequilibrium ionization to buildup to its steady state value, instabilities arising 
from the nonequilibrium plasma state, etc. In this report another possible source of 
difficulty is considered. This is the possibility of the formation of instabilities in the 



ionization region of the entrance of the generator which would inhibit the growth of ion- 
ization to  the fully nonequilibrium level which present theory now assumes. 

cerned with fluctuations occurring in regions well removed from any large gradients of 
gas dynamic or electrical properties. In this regime the steady state solution is that 
pertinent to the infinite homogeneous medium or small deviations therefrom. In the en- 
trance region of a nonequilibrium generator these solutions are only valid for extremely 
short wavelength component in the gradient direction since in this region one finds an 
abrupt rise in electron temperature followed by a four- or five-decade increase in elec- 
tron density occurring within a few centimeters. It is therefore the stability of fluctua- 
tions with wavelength component the order of the ionization region which is of concern in 
this report. 

The analysis is limited to the segmented electrode generator configuration operating 
in the Faraday mode. The ionizing electric field is restricted to that induced by the gas 
flow through the magnetic field or this field supplemented by an electric field applied 
solely in the Faraday current direction. All equations are in SI units and all symbols 
are defined in the appendix. 

Previous analyses of electrothermal instabilities in MHD generators have been con- 

STATEMENT OF PROBLEM 

To facilitate the analysis a simplified model of the ionization region based upon the 
numerical results of Bertolini (ref. 2). is taken. In the model considered, it is assumed 
that at the entering electron temperature (gas temperature) the ionization rate is small 
compared to the electron heating rate so that the entrance region can be considered to 
consist of two subregions. In the first subregion the electron temperature is abruptly 
elevated with negligible change in electron density until the point is reached at which the 
Ohmic heating is balanced by elastic electron-neutral atom collisional and inelastic ion- 
izing collisional energy losses. This is followed by a second subregion in which the 
electron density rapidly rises at constant electron temperature. 

This model is realistic due to the very strong exponential dependence of the ioniza- 
tion rate on electron temperature so that the distance over which the electron density 
builds up and reaches equilibrium is controlled by the peak electron temperature. That 
the electron temperature remains constant in the second region is a consequence of the 
electron density dependence of the electron heating equation and will be demonstrated at 
a later point in the analysis. 
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Assumptions 

On the basis of the previous model this report is limited to the study of the stability 
of fluctuations occurring in the second subregion. Furthermore, as in the case of homo- 
geneous electrothermal instabilities, the following limitations on the analysis are made: 

(1) Throughout the analysis the gas dynamic properties, that is, gas density, veloc- 
ity, and temperature, are taken to be constant. In the steady state solution this is a 
valid assumption since these properties change on a scale which is the order of the gen- 
erator length (typically the order of meters) while the ionization region is ideally the 
order of centimeters. Fluctuations in the gas dynamic properties are ignored relative 
to those of electron density and electron temperature due to the fact that the relatively 
lighter and more mobile electrons respond to disturbances of greatly different frequen- 
cies than do the heavier and less mobile neutral gas atoms which dominate the gas prop- 
erties. Furthermore, due to the low degree of ionization in the region of interest, the 
gas dynamic properties are weakly coupled to the electrical properties. 

This restriction embodies the following limitations: 

restriction the relatively high frequency transverse electromagnetic disturbances are 
not considered. 

(b) Induced magnetic fields are ignored, that is, the analysis is limited to con- 
ditions of low magnetic Reynolds number which is, in general, satisfied in MHD gener- 
ator applications. 

the electron and ion number densities are equal. 

(2) Only the propagation of magnetohydrodynamic type disturbances are considered. 

(a) The displacement current is neglected in Maxwell's equations. Under this 

(c) The plasma is assumed to be quasi-charge neutral, that is, to zero order 

(3) Terms of the order of the electron to heavy particle mass ratio are neglected. 
(4) Ion slip is neglected. This is justified since in cases of interest the Hall param- 

(5) Consider only propagation in the plane perpendicular to the applied magnetic 
eter is less than 10. 

field. 

Equations 

For the previous model and assumptions the analysis is completely determined in 
terms of the electron density and electron temperature by the following set of equations. 

Maxwell equations. - Under the previously discussed conditions of charge neutrality 
and neglect of the induced magnetic field these equations reduce to  

3 



- 
V X E = O  - 

Electron continuity equation. - In the region of interest the dominant process is that 
of ionization and the analysis is restricted to the case in which the ionization process is 
dominated by electron-neutral atom ionizing collisions. Then 

- 2 n + vo Vne = nenavi 
a t e  - 

(3) 

It is noted that the equation depends upon the gas flow velocity xo rather than the elec- 
tron velocity xe. This ar ises  as a result of the neglect of ion slip and the assumption of 
quasi-charge neutrality for which the definition of - j is nee(vo - ve) and v. - j = 0. 
Therefor e 

that is, gas flow velocity is constant. 
Generalized Ohm's law. - 

j=crE*--  e j x B  +- e VPe - -  - -0 
"eVO m v  e 0  

where E* = E +lo x go is the electric field in the frame of reference moving with the 
velocity - vo and 3 is the applied magnetic field. 

In the above form of the generalized Ohm's law the contribution from the heat con- 
duction is neglected. Its effect is to contribute terms of the form he and FTe which 
lead to a slight modification of the vPe term already appearing in the Ohm's law equa- 
tion. However, the slightness of the correction does not seem to  justify the additional 
complexity resulting from its inclusion and therefore is ignored. 

The electrical conductivity cr is defined in the usual manner as 

2 
nee 

(T =- 
m v  e 0  

where, as in reference 1, the total electron momentum collision frequency vo is taken 
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to be constant throughout the analysis. This condition is justified, particularly in the 
region considered here, because the electron density is small so that the collision fre- 
quency is dominated by electron-neutral atom collisions. In this case the frequency de- 
pends upon the neutral atom density (=gas density) which by prior restriction is constant. 
We need then only require that the energy dependence of the cross section be such that 
the frequency have a negligibly small dependence upon electron temperature (nearly 
Maxwellian molecule interaction). This is assumed to be the case in this analysis. 

Electron energy equation. - 

3 k k e ; T e + n v  -VT,  - - j = v - -  kTe 
2 e-0 - )  2 ” - -  e 

- 
(7) = - 2 2 v 0 n e - k ( T e - T 0 )  3 + j * E * -  - (kT i+ ikTe) ( ine+%*Vne)  3 

m 

m 2 a 

where the VTe contribution to the heat conduction term and radiation losses a r e  ne- 
glected. These terms contribute wavelength dependent damping terms to the dispersion 
relation .which decrease with increasing wavelength relative to the wavelength indepen- 
dent elastic collision damping. The analysis is therefore restricted to wavelengths of 
sufficient magnitude so as to make these terms ignorable. For a further discussion of 
this point see reference 3. 

ANALYSIS 

The analysis is carried out for a segmented electrode MHD generator operating in 
the Faraday mode. The coordinates a r e  oriented such that the x-axis is in the fluid flow 
direction and the z-axis is in the direction of the applied magnetic field. 

Steady State Sol ution 

Under the previously discussed assumptions the zeroth order or steady state solu- 
tion is depicted by a region of constant fluid dynamic quantities and a constant electron 
temperature which is given by equating the Joule heating to the elastic and ionization 
collisional energy losses. From equation (’7) the steady state electron temperature is 
then given by 
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j - E * - 2 s v  n 3 k(TeO-To)+ 
-0 -0- 0 e 0 2  

ma 

where the subscript "07' refers to the zeroth order or steady state solution. 
From equation (3) the steady state electron density is given by 

Since the fluid properties are constant nao constant and since vio only depends upon 
the constant electron temperature it is constant. Therefore, with vo a constant and 
orientated along the x-axis 

d - 
vo In neO = naovio = constant 1 - vo VneO = 

neO 

Obviously the space dependence of the steady state electron density is exponential with 
an e-folding length hi defined by 

Under conditions typical of nonequilibrium generator operation the incoming electron 
density which is in Saha equilibrium with the electron temperature equal to the gas tem- 
perature is of order 10l6 electrons per cubic meter. In the ionization region the elec- 
tron temperature is elevated by the preferential Joule heating of the electrons to a level 
at which the electron density in Saha equilibrium with the electron temperature is in the 
range of lo2' to 10 electrons per cubic meter. Furthermore, if this increased ioniza- 
tion is to be effectively used in the generator then the ionization region must be the order 
of a few centimeters at most. Therefore, the e-folding length must be on the order of a 
tenth of a centimeter. 

21 

The steady state Ohm's law relation as obtained from equation (5) is 

j - D E * - -  e +ao-VlnneO kTeO - 
e -0 - 0-0 

With the definition of the segmented Faraday generator, 
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lox = 0 

and with the usual insulating walls in the magnetic field direction so that 

joz = E& = o 

the other components of equation (12) are 

kTeO d E& = E& = po(Eoy - v B ) - - - 
O 0  e d~ In 

where 

eBO 0, =- 
mevO 

(13) 

is the Hall parameter. 
Equations (8), (lo), and (13) to (17) give a complete description of the steady state 

solution in the region of interest. Before proceeding to answer the question as to 
whether or not this solution is stable to small perturbations we will show that the as- 
sumption of constant electron temperature is consistent with this set of equations, 

Since there is no charge separation and vo and Bo are constant 

Egy = EOy - vOBO = constant (18) 

Then dividing equation (8) by a. and using equation (16) 

(19) 
E$ = 2 3 v ~ ( ~ )  mevO - 3 k(TeO - To) + 

2 a m 

Since by prior argument vo and To are constant, it is obvious from equations (11) 
and (18) that equation (19) requires TeO to be constant. 

It is also convenient to note from equations (lo), (17), and (18) that equation (15) 
requires that 

E& = constant (20) 
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and, therefore, that the steady state electric field 

E* - constant -0 - 

Furthermore, since 

2 e a. =- 
mevO 

neO 

the conductivity has the same exponential x-direction dependence as neO so that by 
equations (18) and (16) joy must have this same dependence. The steady state solution 
can now be summarized as 

( '/A 
n - e  e0 

E&, ~t~ = constant 

E& = 0 

TeO = constant 

Pert u r ba t i o n Eq uat io ns 

The essence of this analysis is to determine whether an infinitesimal perturbation 
of the static system will initially grow or decay. To this end we therefore consider 
solutions of the governing equations of the form 

f = fo + f'(r, - t) (26) 

where fo is the steady state solution and f' is an infinitesimal perturbation to this 
solution such that products of the f' can be neglected. Substituting solutions of this 
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form into the governing equations, neglecting perturbations in the gas dynamic quantities, 
and utilizing the steady state solutions the equations for the perturbation quantities be- 
come 

Maxwell's eauations 

- 
V X E ' = O  - 

Electron densitv 

V' - 
3- V In neO i 

neO n eo "io 

- n' 
_.- a nL + V 0 '  v--- e -  - 

vi is determined a s  a function of Te by approximating the ionization cross section by a 
linear curve f i t  to the low energy portion of the curve and averaging over a Maxwellian 
electron distribution so that 

where Ti is the temperature below which the ionization cross section goes to zero. At  
low electron densities where multistage ionization processes a r e  negligible, Ti is the 
temperature corresponding to the ionization potential. This is assumed to be approxi- 
mately true in the region being considered here. The perturbed value of equation (30) is 
then 

where we have neglected terms the order of TeO/Ti since in the regime of interest 
TeO/Ti << 1. Equation (30) then becomes 

- nk 

at "eo neO 
-- a "k + I 0 - V - =  
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Generalized Ohm's law 

- e E * + E ' - e  
m v  -0 - - 

e 0  

V In neO (33) 

Electron energy equation 

nL + I 0 ' V - + -  - -  - + +  Ti)( i  nk 

TeO at neO neO neO 

n' e - 

2(" 

Solution of the Perturbation Equations 

We first write equation (28) in the form 

It is now noted that equations (27) and (32) to (35) are simply a linear set of coupled 
equations with constant coefficients for the variables 

(34) 

Therefore, the solution can be taken in the form 
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N N  N N 

where E, ne/neO, (l/o ) j , and Te/TeO are all constant and considering only propaga- 0 -  
tion in the plane perpendicular to the applied magnetic field (Zx, Z y ,  Zz) = (Zx, Ly'  0). 

It should be noted at this point that the normalization of the perturbation equations 
has resulted in solutions in the form of superimposed waves. However, this differs 
from the homogeneous case in that not all of the perturbed quantities have a wave-like 
form. Consider, for example, the perturbation in the electron density which from equa- 
tions (22) and (36) is of the form 

This solution exhibits growth regardless of the eventual solution of the dispersion rela- 
tion. However, it is noted that this growth is at the same rate  as the zeroth order elec- 
tron density so that if the perturbation is small to begin with it will be small to the same 
ratio throughout the region. This is not unstable behavior since the infinitesimal per- 
turbation remains infinitesimal relative to the zeroth order. Therefore, just as in the 
case of the infinite homogeneous medium, when the imaginary part of w is negative 
the perturbation grows without bound and the system is termed unstable; a negative value 
of the imaginary part of w in the case considered here indicates that the perturbation 
will grow faster than the zeroth order and hence that the system is unstable. 

(35) we obtain 
Introducing the solutions represented in equation (36) into equations (27) and (32) to 

N 

Z X E = O  - -  

+i- kTeoz('e - - +- 
neO e 

(37) 

(38) 

+- kTeo(;;e -+- ::)- V In neO (39) 
e neO 
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N N 

e n 
i- 

neO n 

where w* = w + - -  2 vo is the frequency in the frame of reference moving with the gas. 

of a solution, namely, that the determinant of coefficients be zero. However, it is 
somewhat more illustrative to derive the relation by the process of eliminating the 
various variables in the electron energy equation (eq. (40)). Therefore, the procedure 
to be used in this report is to use equations (37), (39), and (41) to eliminate the 

The dispersion relation can then be determined from the condition for the existence 

N N N 

term in terms of Te/TeO and ne/neO, then eliminate n /n 

written as 

by equation (38). e e0 
The simplest way to do this is to observe from equation (5) that j - E* can be - 

1 e 

- _ _ _  1 1  j .  j -- +)- - . VPe  
n e  oo-  e a g o -  - 

which upon linearization and substitution of equations (12) and (36) yields 
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-- kTeo(:og - - V InneO - i- kTeo 
e e 

To determine (l/uo)l, the cross product 
which, with the use of equations (37) and (41) yields 

x[L x (l/uo)I] is formed from equation (39), 

) (43) 
2- -- kTeo('e - +- 'e)(- 1 1 * - V In neO - 1 V In neO 

e neO TeO 

The quantity 

is then determined from equation (43) by dotting 'fr In neo into the equation to obtain 
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Substitution of equations (43) and (44) into equation (42) after considerable algebraic ma- 
nipulation yields 

where using equations 

a 

15) and 

N 
N 

ne g - iG  Te 

(zX - B ~ z ~ ) ~  TeO 
- -  a - iA 

- p 1 12 neO 4 (zx 0 y 1 +  1 +  
2 2 

'i 'i 

16) to eliminate EOx and joy in terms of E* OY 

1 kTeo d In neO 

'i i 
A 2 l Y ( 1 ~  + Polx)(l, - P o l y )  -E$ + lYl4 Ezy(, dx ) 

2 1 G z  21 ( 1  +poZx) - Y Y  
'i 

(45) 

Upon substitution of equation (45) into equation (40) and using equation (8) to eliminate 

we obtain 
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(50) 

N 

ne/neO is eliminated from equation (50) by multiplying through by o* and using equa- 
tion (38) to give an equation of the form 

'e 

TeO 
x-=o 

so that the condition for the existence of a nontrivial solution requires that X be zero. 
The result of setting X = 0 yields 

"eoe 3 k T e ~  meYo (1, - oOly) 2 
2 +  

.2 
*i 

- i  
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which is the general dispersion relation for the problem under consideration. Unfortu- 
nately it is too complicated to consider for other than numerical evaluation. Fortunately, 
however, in the regime of parameters of interest in most nonequilibrium MHD experi- 
ments the relation can be greatly simplified. 

It is noted that the coefficients a, A, g, and G a r e  functions of the Faraday elec- 
t r ic  field and the ambipolar electric field 

kTeo d In neO 

e dx 

and by virtue of equations (16) and (19) so a re  the coefficients of equation (51). Under 
typical generator operating conditions E* - 2x10 volts per meter and TeO 3000 K. 

At  this temperature the ambipolar field -3X10 volts per meter (d In ne0/dx= 10 1/M, 
see discussion following eq. (11)). Therefore 

3 

2 3 
OY 

kTeO d In neO 

The coefficients of equation (51) a r e  now simplified by retaining only the dominant power 
of the above ratio in each of the coefficients to yield 

1 

4 ox - z +  

= 2  

2 
'i 

2 
'i 

W* 
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10 It is further noted that typically vo = 10 
so that 

collisions per second and me/ma = loe5 

2 - v 0 r  me 10 5 1  - 
sec ma 

Also 

and 

(; +:) 20 

so that 

d In neO 
lo7 

(53) 

Furthermore 

where X 
lengths the order of centimeters in the y-direction 

is the wavelength in the y-direction. In general, Po ,< 1 so that for wave- 
Y 

(54) 

- 2 5 

neoe 
-- - lo 

From relations (53) to (55) we conclude that the factor 

(55) 

d In neO 
( :+z)vo  
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is by far the dominant one in equation (52) and hence we seek a solution in the limit as 
this factor approaches infinity. For this limit, the real and imaginary parts of w be- 
come 

zy(zy + P O I x )  (1, - P 1 ) -L 
O y xi - * w r = -2 n - vom V In neO 

w. = 2 
1 

2 
'i 

- 
- v o * V  In neO (57) 

That this is the correct solution to equation (52) to the order of the ratio of relations 
(53) and (55) to relation (54) can be shown by direct substitution of the solution back into 
equation (52). 

It is noted from equation (57) that for zero magnetic field, Po = 0, wi is positive 
and hence the system is stable at least up to terms the order of the ratio of ambipolar 
to Faraday electric fields. However, with Po > 0, wi becomes negative for orienta- 
of the wave vector for  which 

, 1, P o - <  -1 
lY 

(58) 

Since all orientations are possible, the result indicates that the system is unstable for 
all nonzero values of magnetic field. However, again the result is only correct up to 
terms the order of the ratio of ambipolar to Faraday electric fields. If these higher 
order terms are positive then there will be a critical value of Po for which the system 
goes unstable. 

CONCLUSIONS 

It is concluded that the ionization region of a nonequilibrium, segmented electrode 
MHD generator operating in the Faraday mode is unstable in the presence of a magnetic 
field. To the present order of solution, which is the dominant order in the ratio of the 
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ambipolar to Faraday electric fields, the system is unstable to any nonzero magnetic 
field. It therefore appears that some auxiliary means of ionizing the gas in this region 
may be required or the region should be shielded from the magnetic field. Under in- 
vestigation is the possibility of ionizing by applied electric fields within the magnetic 
field region but in the magnetic field direction or in the Hall field direction. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 7, 1968, 
129-02-08-05-22. 
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APPENDIX - SYMBOLS 

A 

a 

B 

E 

e 

G 

- 
- 

n 

P 

T 

V - 

PO 

defined by eq. (47) 

defined by eq. (46) 

magnetic field vector 

electric field vector 

unit electric charge 

defined by eq. (49) 

defined by eq. (48) 

electric current density 

Boltzmann constant 

wave vector 

particle mass 

particle number density 

pressure 

temperature 

velocity 

Hall parameter 

x wavelength or e-folding length 

V collision frequency 

cr electrical conductivity 

0 wave frequency 

Subscripts : 

a gas atoms 

e electrons 

i ionization value 

x, y, z components of x, y, z coordinate 
system 

Superscripts: 

* evaluated in frame of reference 
moving with gas 

1 perturbed quantities 
N 

defined by eq. (36) 
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